Codethink partnered with York Instruments on a project to develop a new Magnetoencephalogram (MEG) scanner to replace their existing apparatus. This is a neuroimaging device which maps brain activity by recording magnetic fields which are produced by naturally occurring electrical currents in the brain.
The problem at the time was that the capture-and-compute brain of the original scanner was difficult to repair or replace if there was a failure. This was due to the unavailability of the original equipment manufacturer (OEM), resulting in a lack of available parts.
Within the main apparatus of an MEG, superconducting quantum interference devices (SQUIDs), are used to measure very subtle changes in magnetic fields influenced by brain activity. These SQUIDs require super-cooling, commonly with liquid helium, which means that the apparatus to store them needs to be substantial. Liquid helium is also very dangerous to humans so a high level of due diligence is required for the safety of anyone interacting with the scanner. In their new MEG system, York Instruments replaced the SQUIDs used with Hybrid Quantum Interference Devices (HyQUIDs), which are able to operate at higher temperatures than SQUIDs and can operate more accurately. This has positive implications for the safety and cost of the MEG, as less coolant is required.
In this project, Codethink worked on both hardware and software, in a range of different areas including upgrading the Linux kernel used, assisting with updating U-boot, working on the in FPGA and CPLD firmware, working on the core data transfer protocols, the sample data multiplexer, and real-time-displays as well as further software assistance and consulting.
Codethink engineers worked on the full low-level command and control system for synchronising and monitoring a distributed network of data capturing systems. Throughout our time working with York Instruments, Codethink engineers ensured a high standard of code and documentation was maintained.
The development of York Instrument’s main data acquisition pipeline and a variety of GUIs was done in tandem with the hardware design in order to closely integrate the two. One of the most challenging aspects of the work involved developing a system that ensures hundreds of sensors, that were all connected to different computers, actually took measurements within microseconds of each other. Engineers managed this by means of a pair of counter rotating, fibre-optic loops, with a precise calibration algorithm.
The sensors send thousands of samples of data per second over the network to a single system. This system is required to rapidly match up each incoming sample so that all sample numbers are grouped together. Due to the volume of data that the system is required to match together and the minimal amount of time available to do it in, the multiplexer needs to be very efficient. Once the data has been gathered and grouped, it saves samples to HDF5 format and also multicasts to a LAN for real-time data consumers to present or process captured data in real time.
“The real time display we wrote implemented a noise cancellation system. The sizes of the magnetic field fluctuations caused by brain activity is tiny compared to electromagnetic noise created by external sources, such as a passing car. The noise cancellation system worked by having some extra sensors in the magnetically shielded room which were far enough from the head of the patient that they would not pick up the brain activity, only the noise. Then the readings for these were used with some weightings to subtract the noise from the sensors around the brain.” - Michael Drake
Codethink’s engineers enjoyed working on a medical product, contributing to something that would, in turn, help others.
Other Content
- Using Git LFS and fast-import together
- Testing in a Box: Streamlining Embedded Systems Testing
- SDV Europe: What Codethink has planned
- How do Hardware Security Modules impact the automotive sector? The final blog in a three part discussion
- How do Hardware Security Modules impact the automotive sector? Part two of a three part discussion
- How do Hardware Security Modules impact the automotive sector? Part one of a three part discussion
- Automated Kernel Testing on RISC-V Hardware
- Automated end-to-end testing for Android Automotive on Hardware
- GUADEC 2023
- Embedded Open Source Summit 2023
- RISC-V: exploring a bug in stack unwinding
- Adding RISC-V Vector Cryptography Extension support to QEMU
- Introducing Our New Open-Source Tool: Quality Assurance Daemon
- Long Term Maintainability
- FOSDEM 2023
- Think before you Pip
- BuildStream 2.0 is here, just in time for the holidays!
- A Valuable & Comprehensive Firmware Code Review by Codethink
- GNOME OS & Atomic Upgrades on the PinePhone
- Flathub-Codethink Collaboration
- Codethink proudly sponsors GUADEC 2022
- Tracking Down an Obscure Reproducibility Bug in glibc
- Web app test automation with `cdt`
- FOSDEM Testing and Automation talk
- Protecting your project from dependency access problems
- Porting GNOME OS to Microchip's PolarFire Icicle Kit
- YAML Schemas: Validating Data without Writing Code
- Deterministic Construction Service
- Codethink becomes a Microchip Design Partner
- Hamsa: Using an NVIDIA Jetson Development Kit to create a fully open-source Robot Nano Hand
- Using STPA with software-intensive systems
- Codethink achieves ISO 26262 ASIL D Tool Certification
- RISC-V: running GNOME OS on SiFive hardware for the first time
- Automated Linux kernel testing
- Native compilation on Arm servers is so much faster now
- Higher quality of FOSS: How we are helping GNOME to improve their test pipeline
- RISC-V: A Small Hardware Project
- Why aligning with open source mainline is the way to go
- Build Meetup 2021: The BuildTeam Community Event
- A new approach to software safety
- Does the "Hypocrite Commits" incident prove that Linux is unsafe?
- ABI Stability in freedesktop-sdk
- Why your organisation needs to embrace working in the open-source ecosystem
- RISC-V User space access Oops
- Tracking Players at the Edge: An Overview
- What is Remote Asset API?
- Running a devroom at FOSDEM: Safety and Open Source
- Meet the codethings: Understanding BuildGrid and BuildBox with Beth White
- Streamlining Terraform configuration with Jsonnet
- Bloodlight: Designing a Heart Rate Sensor with STM32, LEDs and Photodiode
- Making the tech industry more inclusive for women
- Bloodlight Case Design: Lessons Learned
- Safety is a system property, not a software property
- RISC-V: Codethink's first research about the open instruction set
- Meet the Codethings: Safety-critical systems and the benefits of STPA with Shaun Mooney
- Why Project Managers are essential in an effective software consultancy
- FOSDEM 2021: Devroom for Safety and Open Source
- Meet the Codethings: Ben Dooks talks about Linux kernel and RISC-V
- Here we go 2021: 4 open source events for software engineers and project leaders
- Xmas Greetings from Codethink
- Call for Papers: FOSDEM 2021 Dev Room Safety and Open Source Software
- Building the abseil-hello Bazel project for a different architecture using a dynamically generated toolchain
- Advent of Code: programming puzzle challenges
- Full archive